前面已经有两篇博客记录了ebpf的一些知识,这篇则是实操。作为一个对C语言和Rust有一定了解的选手,我选择使用 libbpf-rs
开发ebpf应用,这就记录下我在Rust项目中集成 libbpf-rs
的过程。
项目地址
安装依赖
- Clang编译器。至少需要Clang10,CO-RE需要Clang11或Clang12
- libbpf库
- bpftool可执行性文件,用来生成vmlinux.h和xx_skel.h
- zlib (libz-dev or zlib-devel ) 和 libelf (libelf-dev or elfutils-libelf-devel )
- pkg-config: libbpf-rs使用pkg-config来查找libbpf库
ubuntu 22.04 安装:
apt-get install -y libbpf-dev zlib1g-dev libelf-dev pkg-config clang bpftool
centos stream 9 安装:
yum install -y libbpf zlib-devel elfutils-libelf-devel pkgconf-pkg-config clang bpftool
生成vmlinux.h
bpftool btf dump file /sys/kernel/btf/vmlinux format c > vmlinux.h
一些简单的ebpf程序可以不依赖vmlinux.h。
也可以不依赖手动生成的vmlinux.h,而是直接将 libbpf-rs 下的 vmlinux模块 作为build dependency,这样可以避免手动生成vmlinux.h的麻烦。后面的详细实操就没有生成vmlinux.h
rust lib项目搭建
总体文件结构
.
├── Cargo.lock
├── Cargo.toml
├── build.rs
├── examples
│ └── example1.rs
└── src
├── bpf
│ ├── program.bpf.c
│ └── program.skel.rs
└── lib.rs
4 directories, 7 files
编写 xxx.bpf.c,生成 xxx.skel.rs
以最简单的 socket filter
统计网卡上行流量为例:
program.bpf.c:
如果想在c语言文件中进行符号跳转,可以安装微软的 C/C++ 插件
ms-vscode.cpptools
,整体体验还是不错的,bpf的helper函数也能跳转。
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_core_read.h>
#include <bpf/bpf_tracing.h>
// copy from #include <linux/if_ether.h>
#define ETH_HLEN 14 /* Total octets in header. */
// copy from <linux/if_packet.h>
#define PACKET_OUTGOING 4 /* Outgoing of any type */
#define IP_PROTO_OFF offsetof(struct iphdr, protocol)
#define IP_DEST_OFF offsetof(struct iphdr, daddr)
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, u64);
} map SEC(".maps");
/*
* Track size of outgoing ICMP and UDP packets
*/
SEC("socket")
int bpf_program(struct __sk_buff *skb) {
// Only outgoing packets
if (skb->pkt_type != PACKET_OUTGOING) return 0;
__u32 proto = IPPROTO_IP;
long *value = bpf_map_lookup_elem(&map, &proto);
if (value) {
__sync_fetch_and_add(value, skb->len);
}
return 0;
}
char _license[] SEC("license") = "GPL";
Cargo.toml:
[package]
name = "bpf_socket_filter"
version = "0.1.0"
authors = ["arloor <admin@arloor.com>"]
edition = "2021"
[lib]
path = "src/lib.rs" # 库文件的路径
[[example]]
name = "example1"
path = "examples/example1.rs"
[dependencies]
libc = "0.2.98" # Raw FFI bindings to platform libraries like libc
libbpf-rs = "0.23.0" # libbpf-rs is a safe, idiomatic, and opinionated wrapper around libbpf-sys
plain = "0.2.3" # A small Rust library that allows users to reinterpret data of certain types safely
pnet="0.34" # Rust library for low level networking using the pcap library
log="0.4" # A lightweight logging facade for Rust
[build-dependencies]
libbpf-cargo = "0.23.0" # Cargo plugin to build bpf programs
vmlinux = { git = "https://github.com/libbpf/libbpf-rs.git", branch = "master" } #使用远程的vmlinux.h 配合build.rs使用
build.rs
use std::env;
use std::path::PathBuf;
use libbpf_cargo::SkeletonBuilder;
const SRC: &str = "src/bpf/program.bpf.c";
fn main() {
let out = PathBuf::from(
env::var_os("CARGO_MANIFEST_DIR").expect("CARGO_MANIFEST_DIR must be set in build script"),
)
.join("src")
.join("bpf")
.join("program.skel.rs");
let mut builder = SkeletonBuilder::new();
let builder = builder.source(SRC);
// 不依赖本地的vmlinux.h,而是使用libbpf-bootstrap项目提供的vmlinux.h,详见build-dependencies
// builder.clang_args(["-I."]);
{
use std::ffi::OsStr;
let arch = env::var("CARGO_CFG_TARGET_ARCH")
.expect("CARGO_CFG_TARGET_ARCH must be set in build script");
builder.clang_args([
OsStr::new("-I"),
vmlinux::include_path_root().join(arch).as_os_str(),
]);
}
builder.build_and_generate(&out).unwrap();
println!("cargo:rerun-if-changed={SRC}");
}
运行cargo build时,libbpf-cargo插件将会根据build.rs生成的program.skel.rs文件,包含了所有的bpf map和bpf program。
编写lib.rs,以作为其他项目的依赖
#![deny(warnings)]
use libc::{
bind, close, if_nametoindex, sockaddr_ll, socket, AF_PACKET, PF_PACKET, SOCK_CLOEXEC,
SOCK_NONBLOCK, SOCK_RAW,
};
use std::os::fd::AsRawFd;
use std::os::unix::io::RawFd;
use std::{ffi::CString, os::fd::AsFd};
#[path = "bpf/program.skel.rs"]
mod prog;
use prog::*;
use libbpf_rs::skel::{OpenSkel, SkelBuilder};
use libbpf_rs::MapFlags;
use pnet::datalink;
use std::mem::size_of_val;
use log::{info, warn};
pub struct SocketFilter {
skel: ProgramSkel<'static>,
}
impl SocketFilter {
pub fn get_value(&self) -> u64 {
get_value(&self.skel)
}
}
impl Default for SocketFilter {
fn default() -> Self {
bump_memlock_rlimit().expect("Failed to increase rlimit");
let skel = open_and_load_socket_filter_prog();
let all_interfaces = datalink::interfaces();
// 遍历接口列表
for iface in all_interfaces {
if iface.name.starts_with("lo")||iface.name.starts_with("podman")||iface.name.starts_with("veth")||iface.name.starts_with("flannel")||iface.name.starts_with("cni0")||iface.name.starts_with("utun") {
continue;
}
info!("load bpf socket filter for Interface: {}", iface.name);
set_socket_opt_bpf(&skel, iface.name.as_str());
}
SocketFilter { skel }
}
}
pub fn open_and_load_socket_filter_prog() -> ProgramSkel<'static> {
let builder = ProgramSkelBuilder::default();
let open_skel = builder.open().expect("Failed to open BPF program");
open_skel.load().expect("Failed to load BPF program")
}
type DynError = Box<dyn std::error::Error>;
fn bump_memlock_rlimit() -> Result<(),DynError> {
let rlimit = libc::rlimit {
rlim_cur: 128 << 20,
rlim_max: 128 << 20,
};
if unsafe { libc::setrlimit(libc::RLIMIT_MEMLOCK, &rlimit) } != 0 {
warn!("Failed to increase rlimit");
}
Ok(())
}
pub fn set_socket_opt_bpf(skel: &ProgramSkel<'static>, name: &str) {
unsafe {
let sock = open_raw_sock(name).expect("Failed to open raw socket");
let prog_fd = skel.progs().bpf_program().as_fd().as_raw_fd();
let value = &prog_fd as *const i32;
let option_len = size_of_val(&prog_fd) as libc::socklen_t;
let sockopt = libc::setsockopt(
sock,
libc::SOL_SOCKET,
libc::SO_ATTACH_BPF,
value as *const libc::c_void,
option_len,
);
assert_eq!(sockopt, 0, "Failed to set socket option");
};
}
pub fn get_value(skel: &ProgramSkel<'static>) -> u64 {
let maps = skel.maps();
let map = maps.map();
let key = unsafe { plain::as_bytes(&(libc::IPPROTO_IP as u32)) };
let mut value: u64 = 0;
if let Ok(Some(buf)) = map.lookup(key, MapFlags::ANY) {
plain::copy_from_bytes(&mut value, &buf).expect("Invalid buffer");
}
value
}
pub fn open_raw_sock(name: &str) -> Result<RawFd, String> {
unsafe {
let protocol = (libc::ETH_P_ALL as libc::c_short).to_be() as libc::c_int;
let sock = socket(PF_PACKET, SOCK_RAW | SOCK_NONBLOCK | SOCK_CLOEXEC, protocol);
if sock < 0 {
return Err("Failed to create raw socket".to_string());
}
let name_cstring = CString::new(name).unwrap();
let sll = sockaddr_ll {
sll_family: AF_PACKET as u16,
sll_protocol: protocol as u16,
sll_ifindex: if_nametoindex(name_cstring.as_ptr()) as i32,
sll_hatype: 0,
sll_pkttype: 0,
sll_halen: 0,
sll_addr: [0; 8],
};
if bind(
sock,
&sll as *const _ as *const _,
std::mem::size_of::<sockaddr_ll>() as u32,
) < 0
{
let err = CString::new("Failed to bind to interface: ".to_string() + name).unwrap();
close(sock);
return Err(err.to_str().unwrap().to_string()
+ ": "
+ &std::io::Error::last_os_error().to_string());
}
Ok(sock)
}
}
编写example1.rs
use std::{thread::sleep, time::Duration};
use bpf_socket_filter as socket_filter;
fn main() {
let socket_filter = socket_filter::SocketFilter::default();
loop{
let value = socket_filter.get_value();
println!("{}",value);
sleep(Duration::from_secs(1));
}
}
测试
cargo run --example example1
进阶
docker运行
需要增加 --privileged
, 参考running-ebpf-programs-on-docker-containers
静态链接
1. 静态链接libbpf、zlib、libelf
libbpf-rs
提供了 vendored
特性,自动在运行时编译libbpf、zlib、libelf的静态库,从而可以静态链接到生成的可执行文件中。在Cargo.toml中激活:
[dependencies.libbpf-rs]
version = "0.23.0"
features = ["vendored"]
default-features = false
vendored
特性编译时需要执行libbpf-sys的build.rs,需要下面的这些包,请根据发行版自行安装
# centos # 使用 yum whatprovides xxx查询到具体的package
yum install -y autoconf gettext-devel flex bison gawk make pkg-config automake
# ubuntu # 使用 apt-file search xxx查询到具体的package
apt-get install -y autoconf autopoint flex bison gawk make pkg-config automake
2. 生成静态链接的 gnu 二进制文件
参考Rust Linkage和VENDORIZE: add feature vendored,执行以下命令即可:
RUSTFLAGS="-C target-feature=+crt-static" cargo build --release --target x86_64-unknown-linux-gnu
注意:
- libbpf-rs静态链接仅支持gnu,不支持musl
--target x86_64-unknown-linux-gnu
不能省略- 可执行文件在
/target/x86_64-unknown-linux-gnu/release/
如果报错:
/usr/bin/ld: cannot find -lm
/usr/bin/ld: cannot find -lc
说明系统上缺少了一些静态库,安装即可。
以我的redhat9开发机为例,缺失的是 glibc-static
# search from https://pkgs.org/search/?q=libc.a
# centos 9
dnf --enablerepo=crb install glibc-static
# redhat9
subscription-manager repos --enable codeready-builder-for-rhel-9-x86_64-rpms # https://access.redhat.com/articles/4348511
yum install -y glibc-static # yum whatprovides "*/libc.a"
以ubuntu为例,缺失的是 libc6-dev
apt install -y libc6-dev
$ apt update && apt-get install -y apt-file && apt-file update && apt-file search libc.a | grep "libc6-dev:"
libc6-dev: /usr/lib/x86_64-linux-gnu/libc.a
$ apt-file search libm.a | grep "libc6-dev:"
libc6-dev: /usr/lib/x86_64-linux-gnu/libm.a